

September 2025

Powering India's EV future: The charging infra playbook

REPORT

QUALIFICATIONS, ASSUMPTIONS AND LIMITING CONDITIONS

This report is for the exclusive use of the RedSeer client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted or distributed for any purpose without the prior written permission of RedSeer. There are no third party beneficiaries with respect to this report, and RedSeer does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. RedSeer accepts no responsibility for actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties.

Executive Summary (1/3)

1. Current State of Public Charging in India

- India currently has ~30,000 public charging stations, but many face operational challenges.
- A proportion of chargers remain non-functional due to theft of charging guns and copper wiring
- Even among functional chargers, utilization is low (<10%), largely because:
 - A significant share are slow AC chargers
 - Rural and highway locations often face unreliable grid supply
 - Stations are unevenly distributed, with dense concentration within city limits and limited presence in highways/expressways
 - Additional issues such as theft, poor maintenance, and lack of enforcement worsen reliability

2. EV Demand and Usage Dynamics

- EV adoption has surged, with ~6x sales growth over the last 3-4 years
- Penetration is expanding across multiple use cases and vehicle segments
- The commercial segment (fleet operators, logistics, last-mile mobility) is emerging as a strong demand driver
- However, despite rising sales, charging utilization has lagged, creating a mismatch between demand growth and infrastructure readiness

Executive Summary (2/3)

3. Economics of Charging Infrastructure

- With low utilization and frequent outages, the commercial viability of charging operators remains weak
- Weak economics discourage further investments, slowing infrastructure expansion
- A virtuous cycle will only emerge when:
 - Higher EV adoption drives consistent utilization
 - Reliability and grid readiness improve
 - This creates commercial sense, unlocking infrastructure scale-up

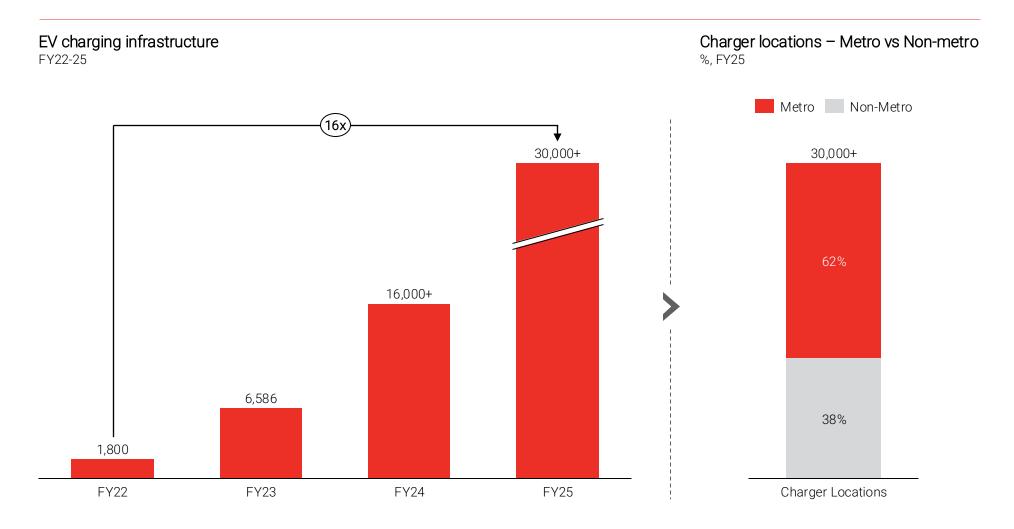
4. The Scale of the Challenge

- India will need ~1.3 million public charging stations by 2030 to support its ambition of 30% EV penetration.
- Currently, only ~15,000 chargers are operational, highlighting a significant gap
- For sustainable scale-up, EV adoption and charging infra expansion must move in tandem
- Addressing reliability, grid readiness, theft, and enforcement issues will be critical to bridging the gap and enabling viable growth

Executive Summary (3/3)

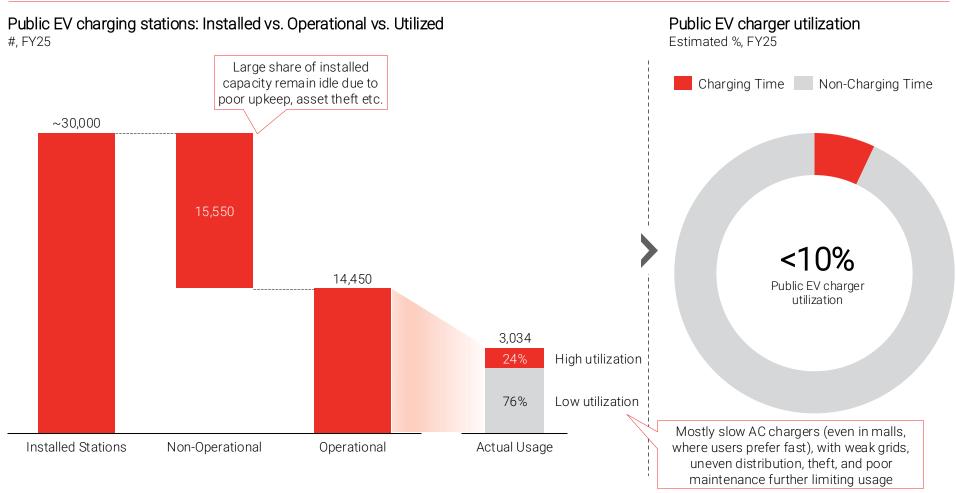
5. The Solution

Current Trends

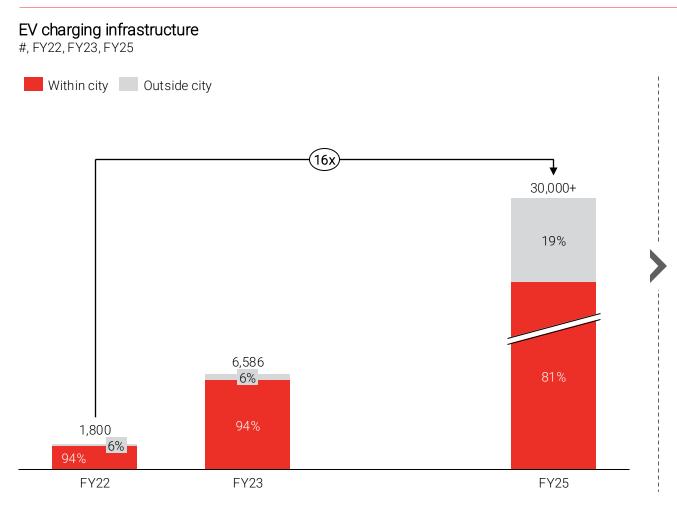

- Strategic mandates at both central and state levels are **boosting EV adoption**, laying the foundation for large-scale transition
- Charging Point Operators (CPOs) today offer a mix of slow AC and fast DC chargers, with competition intensifying in the fastcharging space
- Public Sector Units (PSUs) currently dominate the sector with >50% market share, but several new-age companies are entering to capture growth opportunities
- Technology standards are shifting towards high-power fast chargers, requiring specialized charging guns and stronger grid support

What is Required

- Interoperability as the cornerstone: Adoption of open protocols (OCPI, OCPP) to ensure standardized chargers across operators
- Reliability focus: Robust maintenance, anti-theft measures, and grid upgrades to improve uptime
- Demand-supply alignment: Infrastructure rollout to follow EV adoption hotspots, supported by usage data and real-time tracking
- Ecosystem partnerships: Collaboration between OEMs, DISCOMs, CPOs, and private players to accelerate scale
- Policy push: Viability Gap Funding (VGF) for tier-2/3 cities, EV-ready norms for new construction, and fiscal incentives for infra expansion
- Technology innovation: Battery swapping (2W/3W), solar-charging, and V2G integration to diversify solutions and strengthen grid
 resilience



India currently has ~30,000 EV charging stations for public use located largely in metro cities


Note(s): (1) Metros include 8 cities i.e., Delhi-NCR, Mumbai, Chennai, Kolkata, Mumbai, Pune, Hyderabad & Ahmedabad (2) Non-metro cities include Tier 1 and Tier 2+ cities

However, over half of India's public chargers are non-operational with limited on-ground usage

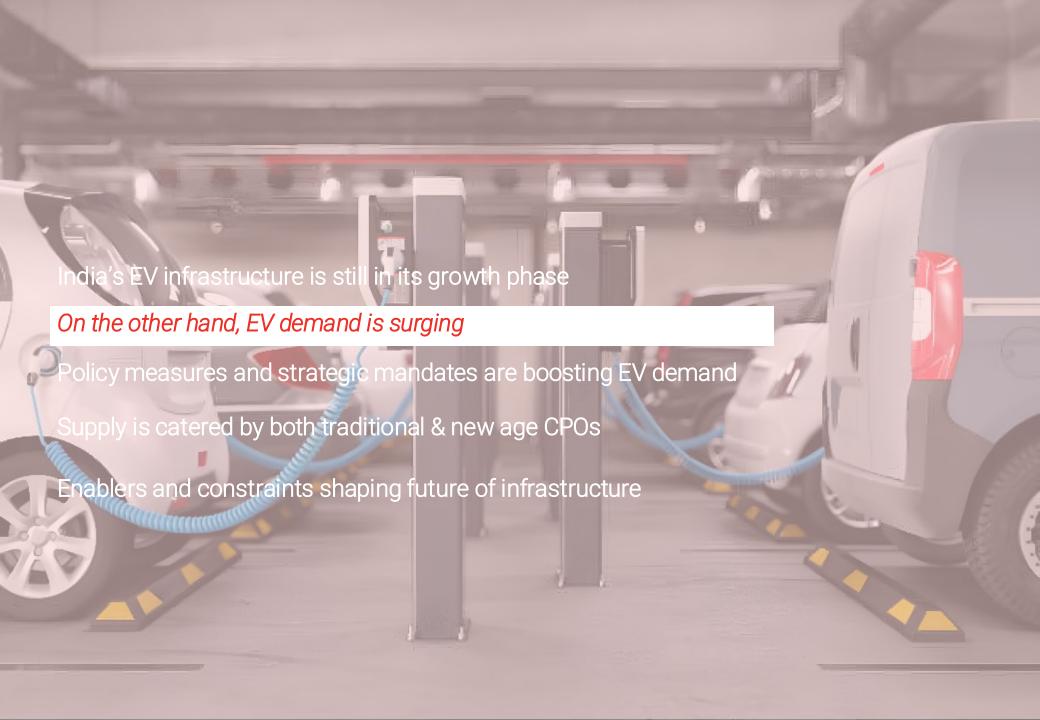
Note(s): (1) High-utilization chargers are those used frequently by multiple vehicles each day, reflecting strong demand and optimal siting, defined as >10% utilization. Low-utilization chargers, in contrast, experience only sporadic use, typically averaging 2-3% utilization and defined as \leq 10% utilization. (2) Non-charging time includes idle time as well as time taken for repair and maintenance work etc

Moreover, chargers are densely concentrated within city limits, limiting long range usage of EVs

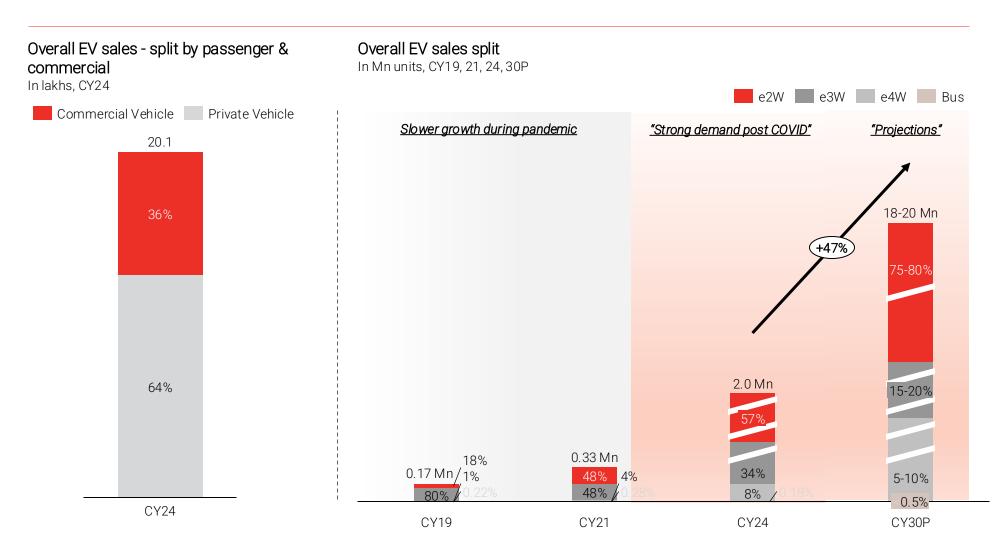
Remarks

- NHAI and MoP's 2024 EV Charging Guidelines mandates chargers installation every 20 km on highways, expressways and major roads to improve intercity connectivity and reduce range anxiety, but deployment is still at a pilot stage.
- As of Aug 2025, India EV's network includes ~30,000 public charging stations with most concentrated in urban hotspots and metro cities such as Bengaluru, Mumbai, Delhi

Note(s): (1) Outside city refers to EV charging stations located along national highways and expressways.

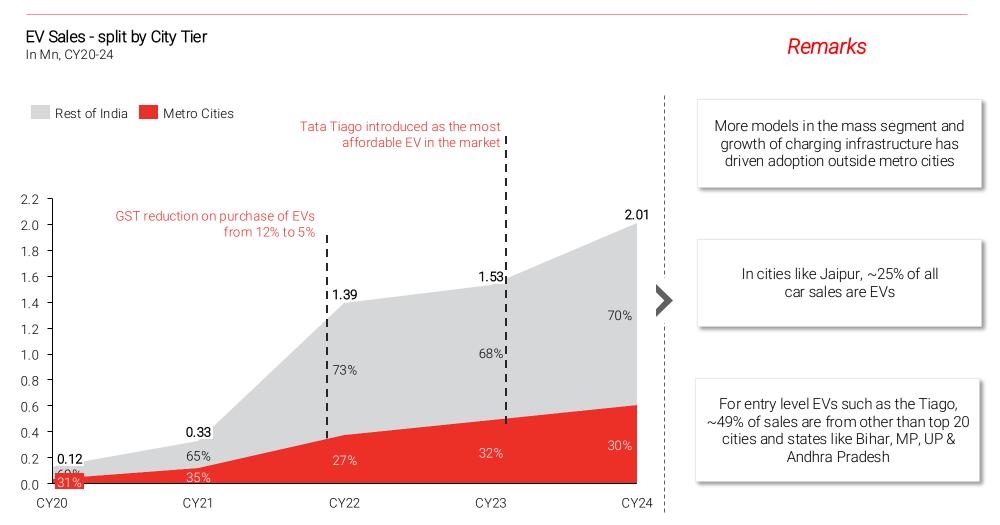

Even globally, India significantly trails developed economies on public charging infrastructure

Charging infrastructure – India vs. others FY25


Parameters	•	*:		
Country	India	China	USA	Norway
EV Sales Penetration	7.7%	~54%	~10%	97.4%
Public Chargers (per 1000 EVs)	~5	~200	~55	~29
Fast Charger Penetration (%)	Low	45%	30%	~70%
Charger Density (per 100 km road)	~5	~100	~70	~180

Charging infrastructure in India is below global performance benchmarks and requires aggressive scale up to support EV adoption

Note(s): (1) Interoperability refers to charging stations that can be used by any EV, regardless of the manufacturer or the charging network it belongs to



India touched ~2 Mn million EV sales in CY24, led by 2Ws & 3Ws

Note(s): (1 Telangana data and slow speed e2Ws (<25km/hr.) is not captured in VAHAN database, though both contribute to charging demand need.

EV adoption has been on a consistent rise in non-metro cities

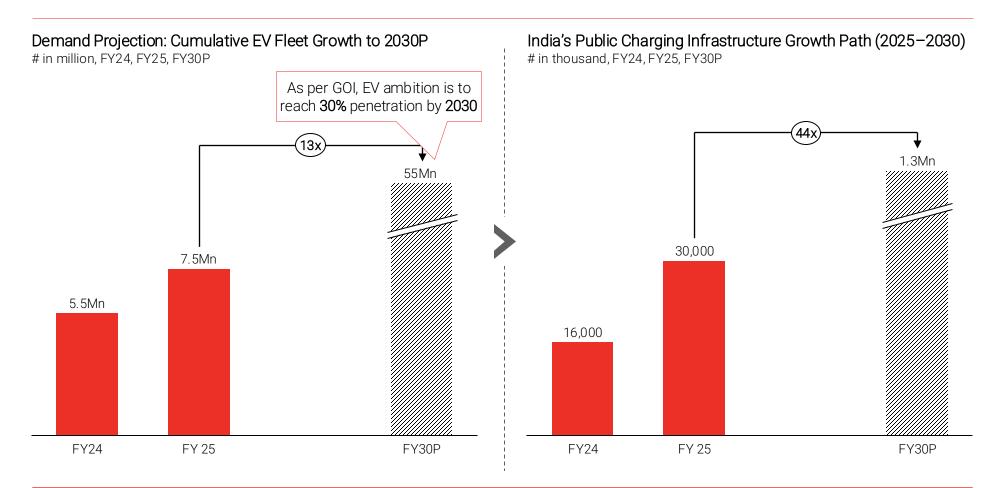
Note(s): (1) Metro cities includes 8 cities i.e., Delhi-NCR, Mumbai, Chennai, Kolkata, Mumbai, Pune, Hyderabad & Ahmedabad; (2) Delhi-NCR includes Gurugram, Noida, Ghaziabad only (3) Telangana data is not updated in the chart

These EVs are being deployed across multiple use cases for each vehicle segment

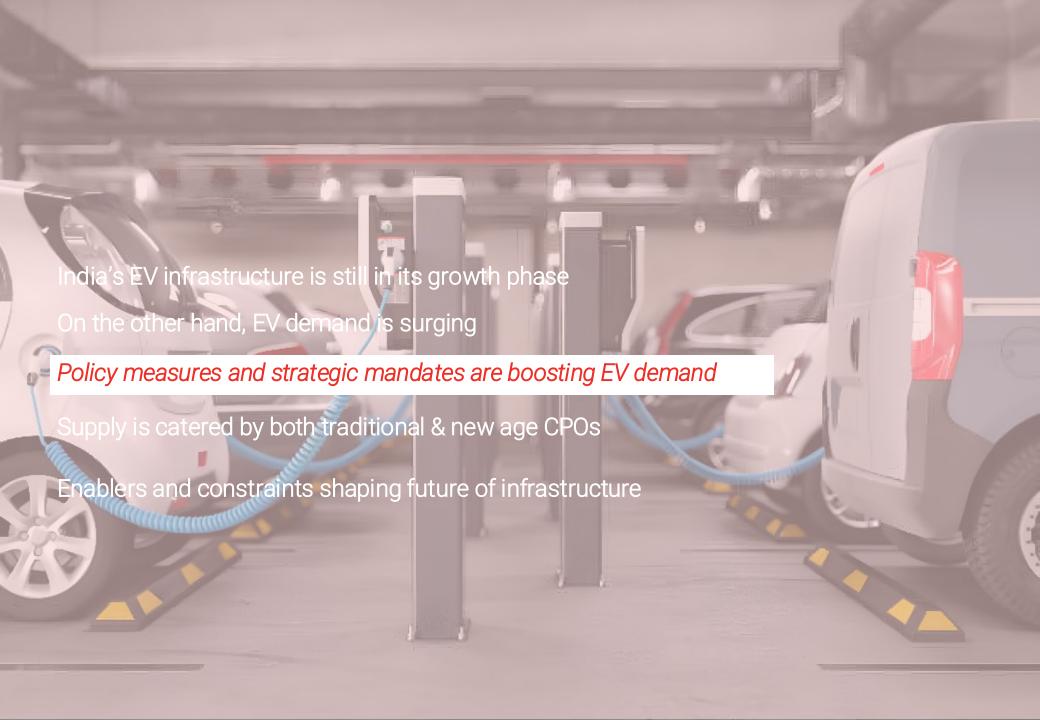
Commercial EV use cases and growth drivers by type

EV Category	Use cases (non-exhaustive)	Growth drivers		
Electric 2-wheeler (e2W)	 Use case 1: Last-mile delivery for e-commerce and food delivery (Amazon, Flipkart, Swiggy, Zomato) Use case 2: Bike taxi services (Ola Bike, Uber Moto, Rapido) and shared mobility platforms (Yulu) 	Increasing demand for last-mile delivery 2 Lower operational costs compared to ICE vehicles 3 Battery-swapping options reduce downtime for high-usage fleets		
Electric 3-wheeler (e3W)	 Use case 1: Urban goods transportation (Bigbasket, Amazon) Use case 2: Large size last mile deliveries (Zomato, Swiggy, Amazon) Use case 3: Passenger transport in urban areas (auto rickshaws) 	High demand for local freight and retail transport 2 E-commerce partnerships for green supply chains 3 Promotion of old ICE replacement with e3W in pollution heavy zones		
Electric 4-wheeler (e4W)	 Use case 1: Car rentals and ride-sharing platforms Use case 2: 	1 Increasing use of electric LCV in FMCG and delivery logistics 2 Corporates switching to e-fleets to meet sustainability goals 3 Development of charging infra and battery technology		

With businesses undergoing 'electrification' of fleets, the demand for EVs is strongest in the commercial segment


Policy Mandates Accelerating EV Adoption in India

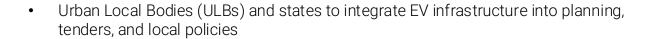
Sector	Company	Stated EV Goal	Key Initiatives		
E-commerce	Flipkart 🙀	100% EV fleet by 2030	Collaborates with Hero Electric, Mahindra Electric, and Piaggio for EV deployments, member of EV100, Achieved 10,000 EVs milestone		
	amazon	100,000 EV fleet globally by 2030	Met 10,000 EVs India target ahead of 2025; part of The Climate Pledge to reach net zero by 2040		
Food and Grocery delivery	ℰ eternal	100% fleet transition to EV	EV100 member ; Partnered with various EV bike rentals for EV deliveries via battery swapping, and fleet-as-a-service, focused on last-mile operations		
Logistics and Last mile	FedEx.	Carbon-neutral operations globally by 2040	Committed \$2B to fully electrify its delivery fleet by 2040 , while also investing in alternative fuels, carbon capture, and EV pilots with BrightDrop (GM)		
	Ecom Express	10,000 EVs in fleet	Collaborating with OEMs to deploy both 2W and 3W EVs		
Ride Hailing	Uber	Electrify every ride by 2040	Uber Green was launched in 3 metro cities, plans to deploy 25,000 e-4Ws and 10,000 e-2Ws . Key partners include Lithium Urban, Zypp, Everest Fleet etc.		


Note(s): (1) EV100 is a global initiative by The Climate Group where member companies commit to transitioning their vehicle fleets to 100% electric by 2030.

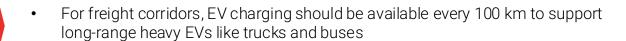
Consequently, India's EV ambition hinges on a 44x Public Charger Scale-Up

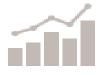
- India needs to install 1.32 million public EV charging Infra by 2030
- By 2030, ensuring a minimum of 45-50 chargers per 1,000 EVs, aligned with global accessibility benchmarks
- To stay on track, India must double its charger count every 14-15 months

Strategic mandates are bringing about a structural shift boosting EV adoption (1/2)

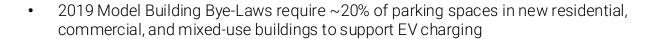


MoHUA + State EV Policies




NITI EV Infra Implementation Handbook

MoP Charging Guidelines (Freight Corridors)


NITI Implementation Roadmap • Recommends phased charger rollout and annual percentage-based installation targets for strategic planning

Note(s):(1) MoHUA: Ministry of Housing and Urban Affairs

Moreover, strategic mandates are bringing about a structural shift boosting EV adoption (2/2)

Mandatory EV-Ready Parking in Buildings

EV Charging at Highway Wayside Amenities (WSA)

 MoRTH mandates EV charging stations at all WSAs every 40 – 60 km along national highways; targeting 700+ WSAs sites by FY 2028-29, integrating chargers with rest-areas and essential services

Mass E-Bus Procurement via PM-eBus SEWA

Launch of PM e-Bus scheme with ₹3,435 crore allocated to deploy over 38,000 electric buses across India under Phase II

E-DRIVE Scheme for Charging Infrastructure Scale-up

Note(s):(1) MoRTH: Ministry of Road Transport and Highways; WSA: Wayside Amenities, which are modern reststop facilities along highways.

Policy push across standards, consumer access, and rollout is expected to drive interoperability in India

Policy Drivers for Interoperability in India

Interoperability

- Interoperability
 ensures any EV can
 charge at any public
 station, regardless of
 manufacturer or
 operator
- Enabled through common hardware & open protocols (OCPP/OCPI/UEI), enabling seamless discover-charge-pay access across network

Standardization of Hardware &

Protocols

- The Bureau of Indian Standards (BIS) IS-17017 series defines plug and communication standards (AC/DC connectors, CCS2, CHAdeMO, IS-15118) to ensure hardware-level compatibility.
- MoP's 2024 EV Charging Guidelines mandates adoption of open protocols (OCPP/OCPI/UEI) across all public chargers, making new capacity interoperable by design

Guidelines

Unified Consumer Access

- Bureau of Energy Efficiency (BEE)
 National Online Database to
 integrate all public chargers (to
 show availability, type, tariff)
- MoP requires common digital payments (UPI, cards, Bharat BillPay) across networks, ensuring seamless consumer experience
- The e-AMRIT portal by NITI Aayog promotes awareness, integration, and access to EV infrastructure.

Infrastructure Rollout Alignment

- National Highways Authority of India (NHAI) mandates charger installation every ~20 km on highways, increasing demand for interoperable coverage
- Govt. incentives under FAME-II and PM E-DRIVE link subsidies to compliance with open standards (OCPP/OCPI), ensuring interoperability at scale.

Note(s):(1)OCPP - One Charge Point Protocol and OCPI - Open Charge Point Interface, UEI - Unified Energy Interface

Overall, India has seen large scale EV policy measures at the centre

And state levels that are bolstering EV demand

	Karnataka	Maharashtra	Tamil Nadu	Delhi	Gujarat
Launch Year	2017	2018 (Updated in 2025)	2019 (Updated in 2023)	2020 (Extended till 2026)	2021
Supply Side Incentives	Capital Subsidy: 25% on fixed capital investment, capped at 10 cr. Interest Subsidy: 6% on loans for MSMEs, up to 10 lakhs annually for 5 years Stamp Duty Exemption: 100% in Zones 1 & 2, 75% in Zone 3, and 50% in Zone 4	Manufacturing Support: Incentives for manufacturing and R&D in EV components, vehicle assembly, battery assembly, cell manufacturing, and recycling Skill Development: Training programs for EV workforce development	Tax Benefits: 100% SGST reimbursement for 15 years and 15%-20% capital subsidies for EV/battery manufacturing Electricity & Land 5-year electricity tax exemption and discounted land rates in designated districts	-	Gujarat Industrial Policy 2020 and related government resolutions apply to EV sector manufacturing setups and upgrades EV start-ups are supported with research, incubation, and training via GERMI
Demand Side Incentives	Exemptions: Full road tax and registration fee waivers for all EVs in Karnataka.	Subsidies 25,000/kWh, up to ₹ 20 lakh for e-buses & ₹2 lakh for four-wheelers and transport EVs Waivers: 100% road tax, registration fee and renewal fee exemptions	Exemptions: 100% waiver on road tax, registration. and permit fees till Dec 25 Subsidies Incentives up to ₹10,000/kWh for ebuses, e-3Ws, and light goods carriers	Subsidies: ₹30,000 for e- autos, e rickshaws, and goods carriers. Road tax & registration fee waivers for all EVs during policy period	Subsidies: ₹10,000/kWh for 2Ws, 3Ws, and 4Ws, limited to 40% of ex- factory price
Charging Infrastruct ure	Capital Subsidy. 25% subsidy (up to 10 lakh) for EV charging stations PPP: Promoting infrastructure development through public-private partnerships	Incentives: Up to ₹5 lakh for 50-250 kW and ₹10 lakh for >250 kW chargers, prioritising underserved areas; chargers every 25 km on highways and 3 km in cities.	Subsidies: 25% capital subsidy for charging stations; 2 lakh for battery-swapping stations	Subsidies: Mandate for charging points every 3 km in urban areas; plan for fast chargers every 5 km in high-density corridors and ₹6,000 for charging points in spaces residential/commercial	Subsidies: 25% capital subsidy (up to 10 lakh) Exemptions & Tariff: 100% electricity duty waiver & subsidized charging rates under GERC guidelines

Sources(s): Redseer Analysis, Desk Research

Even private OEMs are developing proprietary EV charger ecosystem

OEMs proprietary EV ecosystems

Electric 2 Wheelers

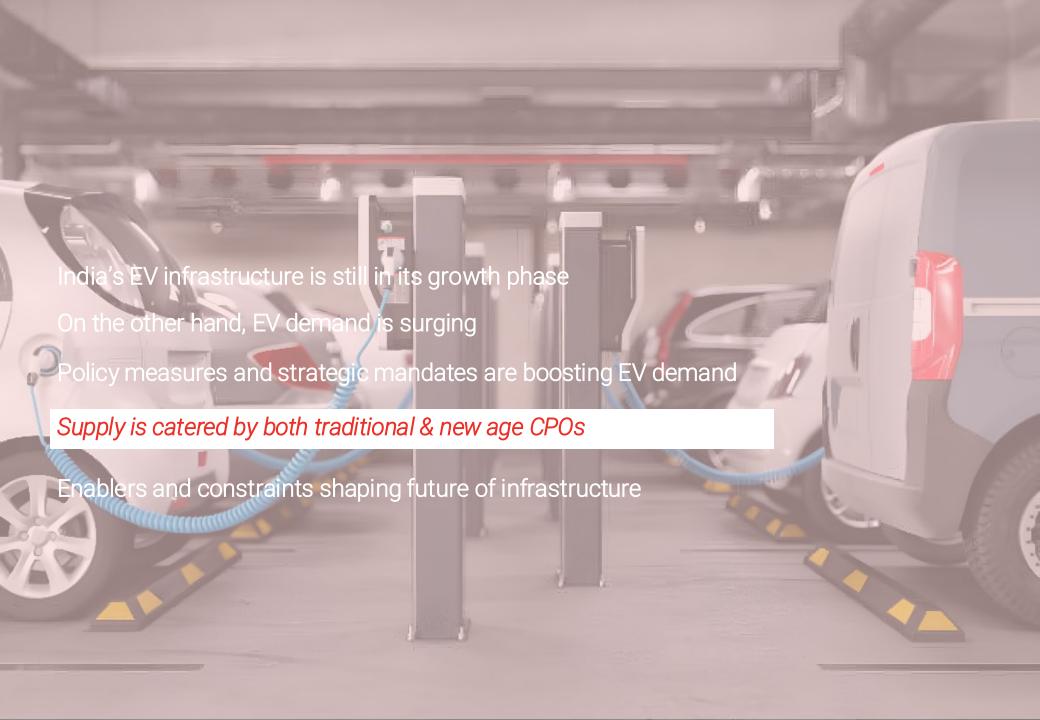
TVS Motors

Hyundai

Electric 4 Wheelers

Ola Electric

- 200+ Hyper chargers across
 India (free for S1 users),
 ~50 km in 15 mins
- Plans to scale to 100,000+ points across 400+ cities.
- Manufacturing via Future Factory; Gigafactory in pipeline.
- Hyper chargers integrated with Ola app for real-time availability, route planning, and remote diagnostics.


- Access to Tata Power (since 2021) and Jio-BP (since 2022) networks.
- TVS ecosystem support through dedicated iQube infrastructure
- iQube 3.1 kWh variant (IDC 123 km) launched July 2025.
- iQube app includes charger locator and connected vehicle insights for seamless EV experience.

 Battery-as-a-Service at ₹3.5/km, lowering upfront costs

MG Motors

- One-year free charging for Windsor EV early buyers via eHub.
- Charging network supported by **JSW partnership**.
- Offers eShield program with extended warranty, RSA, and resale value to enhance ownership experience.

- Targeting 600 public fast chargers by 2031; ~50 installed
- Chargers (60–180 kW) at dealerships/highways
- Partners: Charge Zone & Statiq; accessible via myHyundai
- Expanding public charging via Shell & IOCL fuel stations under strategic partnership rollout

Overall, charging infrastructure is presently being built with both public & private participation

Charging Models – EV Charging Infrastructure and Solutions

Captive Fleet Charging

Provides charging solutions for own fleet of ride-hailing services such as public transport e-buses, taxis and freight vehicles

Charge Point Operators

EV Charging-as-aservice

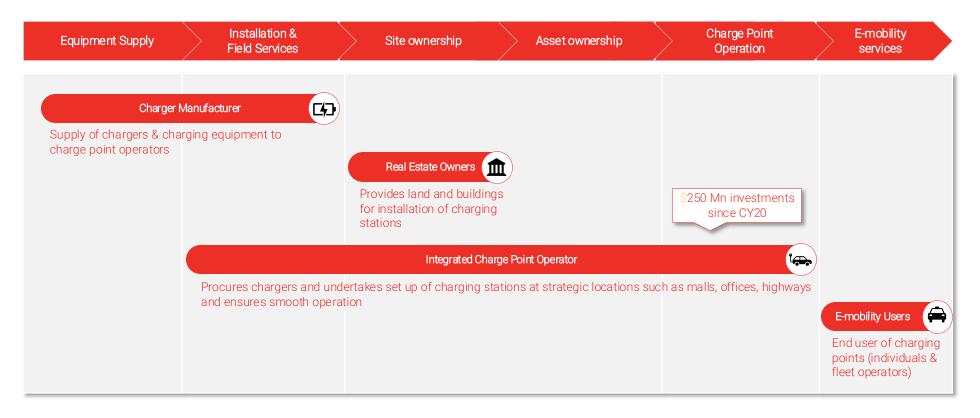
Provides integrated EV charging solutions for residential and workplace environment

Green Public EV Charging

Eco-friendly charging points for public use of electric vehicles. includes kerb side charging facilities

Battery Swapping for Light EV Charging

Allowing users to depleted batteries for fully charged


DRE based Mini/Microgrid powering EVs

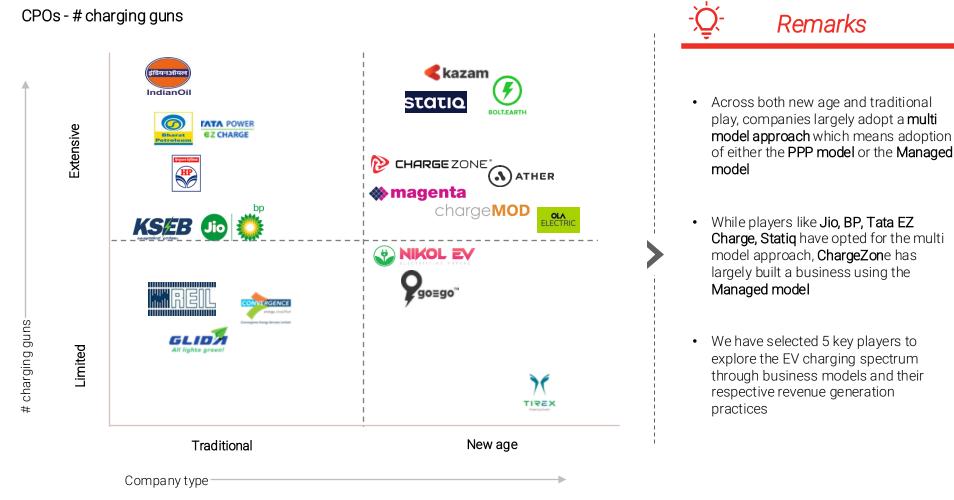
Uses sources like solar and biogas or even hybrid source of energy in rural areas

Private + Public Charging Models

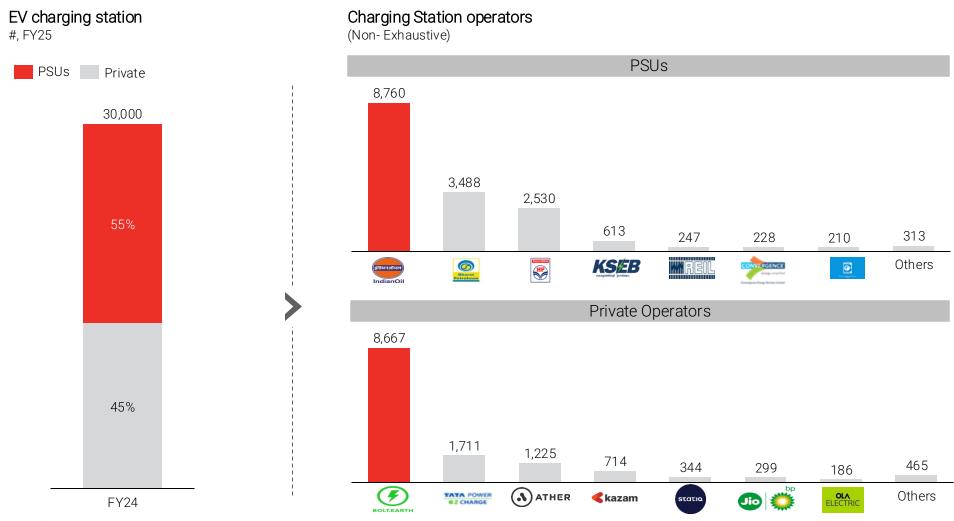
Charge Point Operators (CPOs) offer the most comprehensive solutions for end users

EV Charging Landscape - Value Chain

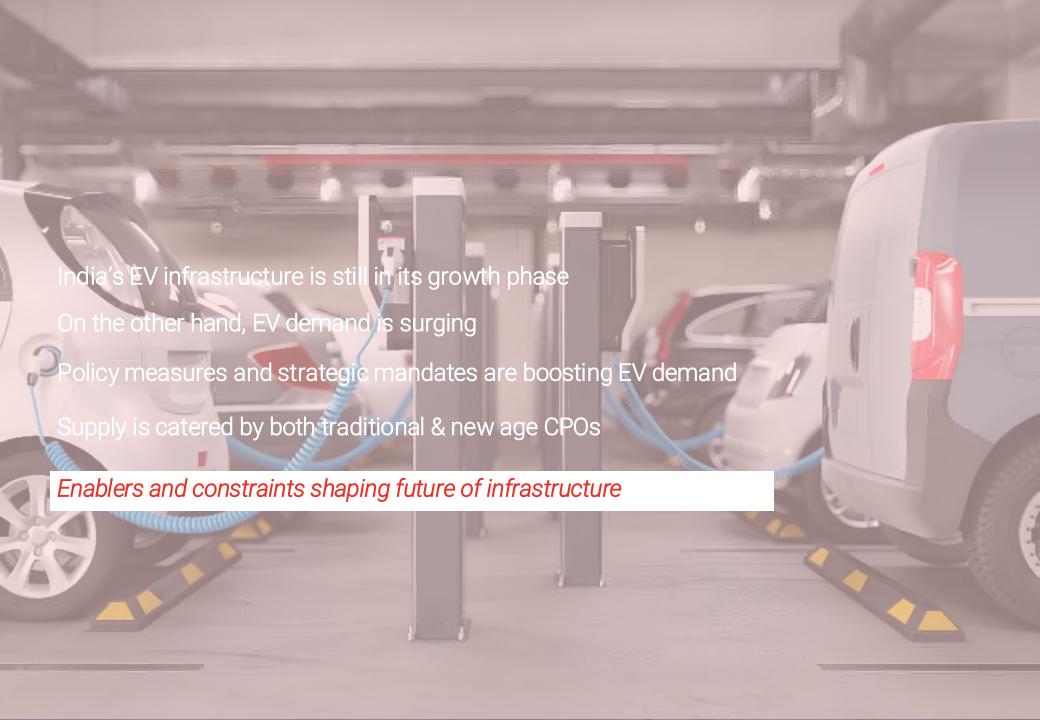
Note(s): (1) Equipment supply relates to manufacturing of chargers and charging equipment (2) Installation & field services enable set up of charging stations at multiple locations for public use (3) Asset ownership refers to ownership of chargers and charging equipment (4) Charge point operation relates to maintenance an upkeep of installed charging stations (5) E-mobility services include ride hailing services, employee transportation, fleet management etc. (6) In India, there are limited business models of site ownership for integrated CPOs


Most CPOs provide both slow and fast charging solutions, with competition intensifying across fast charging

Charging types – key players


Note(s): (1) For fast charger installations, CPOs need to work with discoms to install additional transformers owing to a higher load requirement and hence costs are higher

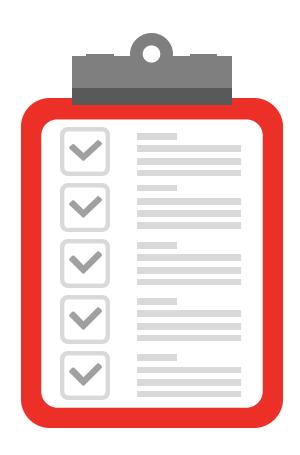
Both traditional and new age companies are addressing the need for CPOs in the value chain



Note(s): (1) Traditional companies refers to businesses backed by large conglomerates either in India or overseas (2) New age refers to modern companies with technological capabilities in EV charging (3) PPP is Public Private Partnership (4) Limited charging guns refers to <500 guns while extensive refers to >5000 charging guns

PSUs dominate India's public charging landscape, operating >50% of stations

Note(s): (1) PSUs are government-owned entities (2) Private operators include startups and private firms managing EV charging stations


Technology standards are evolving more towards fast chargers requiring special guns

Types of chargers

Deremeters	Level 1	Level 2	Level 3	
Parameters	Level I	Level 2	AC	DC
Voltage	120-240	240-400	200-1000	
Power (kW)	<=3.5 kW	<=22 kW	4.3 to 22 kW Up to 400 kW	
Time required	8-10 hours (depends on battery size)	6-8 hours (depends on battery size)	Less than an hour	
Preferred for vehicle type	2W, 3W, 4W	2W, 3W, 4W	4W	
Additional hardware requirement	No	Yes	Yes	
Convenience of charging	Convenient charging by plugging in cord to a three-pin wall socket	Requires installation of an AC wall- box charger, some OEMs offer home/ workplace installation	Hardware is expensive, making installations a significant investment	
Location	Home/ Workplace	Home/ Workplace installation, Public charging stations	Public charging stations only	
Type of Compatible charger	Type 1, Bharat AC-001, Bharat DC-001	Type 1, Type 2, GB/T, Bharat AC-001	Type 2	Type 2, CHAdeMO, CCS1, CCS2
Illustrative images	Type 1	Type 2	CHAdeMO CC	CS1 CCS2

For charging infrastructure to scale, there are some systemic challenges that must be addressed

Key Barriers to EV Charging Infrastructure Expansion

Land Access:

Dense urban land constraints limit new charger sites. Procurement tends to fail repeatedly in states

Grid Delays:

Grid upgrade and connection delays of 90-120 days for high-power chargers challenge fast deployment; DISCOM capacity misalignment

RWA Pushback:

>80 % of gated-community RWAs deny private charging access citing safety, wiring cost and billing complexity

Repair and Maintenance Gaps:

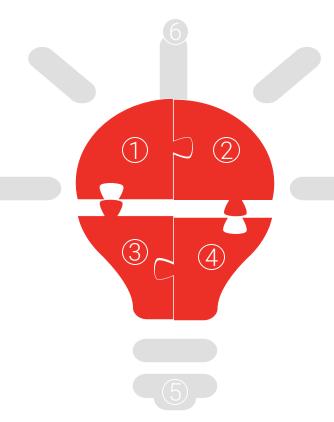
Many public charging stations suffer from poor maintenance, causing frequent breakdowns, low uptime, and underutilization

Note(s): (1) DISCOM - Distribution Company; RWA - Resident Welfare Association. (2) Barriers listed reflect key on-ground challenges to scaling public and private EV charging

As solutions are developed, we expect 6 key enablers to lead EV infrastructure expansion

Potential solutions for EV charging expansion

1. Infrastructure Expansion


Ramp up public + highway fast charging; bridge metro vs. non-metro disparity

3. Fiscal & Policy Support

Expand policies, introduce Viability Gap Funding (VGF) for Tier-2/3 cities, and mandate EV-ready norms in new residential and commercial buildings

5. Tech Innovation

Encourage deployment of battery swapping (2W/3W), solar-charging, and V2G integration. Invest in R&D for faster chargers and resilient grid solutions

2. Private Sector-Led Ecosystems

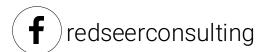
Leverage OEM-CPO partnerships (e.g., Tata Power, Jio-BP) to scale faster

4. User-Centric Interoperability

Adopt open protocols (OCPI, OCPP) to standardize chargers; enable seamless roaming, unified payment & uptime info

6. Smart Planning & Data

Use EV usage data to plan optimal site locations; integrate real-time tracking


Note(s): (1) OCPI stands for Open Charge Point Interface; OCPP stands for Open Charge Point Protocol; VGF stands for Viability Gap Funding; V2G refers to Vehicle-to-Grid. (2) These six pillars form a comprehensive framework of policy, technology, and business model levers required to enable a scalable, EV charging ecosystem in India.

redseer

Thank You!

For media related queries, write to media@redseerconsulting.com

Solve. New redseer.com

Disclaimer and confidentiality notice: This document contains information that may be confidential and proprietary. Unless you are the intended recipient (or authorized to receive this document for the intended recipient), you may not use, copy, disseminate or disclose to anyone the message or any information contained in the document.